

Case Study: Deployment Considerations for a KDC in a Secure
PacketCable Network

A White Paper
By Sumanth Channabasappa

Copyright Information

This material is protected by the laws of the United States and other countries. No part of this
document may be reproduced, distributed, stored in a retrieval system, or altered in any form, by any
means, electronic, mechanical, photocopying, or otherwise, by any entity; nor may it be used to make
derivative work (such as translation, transformation, or adaptation) except in accordance with
applicable agreements, contracts or licensing, without the express written permission of Alopa
Networks.

Note: This document is provided for informational purposes only and may be subject to change
without notice. Any mention to specifications is for reference only.

Notice

Alopa Networks has made every attempt to ensure the accuracy and completeness of information at
the time of publication. As we continuously improve and add features to our products, Alopa
Networks reserves the right to revise this document without prior notification of such revision or
change.
Disclaimer: The contents of this case study are specific views of the author and Alopa Networks, and
are not endorsed by CableLabs®.

Trademarks

"Alopa," "Alopa MetaServ™," the Alopa logo, and "Real-Time Any-Time™" are trademarks of
Alopa Networks, Inc. ("Alopa"). All other trade names or trademarks are the property of their
respective holders.
CableLabs® and DOCSIS(R) are registered trademarks of Cable Television Laboratories, Inc.
PacketCable and CableHome are trademarks of Cable Television Laboratories, Inc.

Ordering Information

To order copies of this document, contact your Alopa Networks representative.

Technical Support

Support services can be reached via phone at 408-331-1750 ext.116, or e-mail at
support@alopa.com.

Feedback

Alopa Networks appreciates your comments about this document. Please e-mail comments to
documentation@alopa.com.

Version: 3/5/03 Rev. 2

© 2003 Alopa Networks, Inc. All Rights reserved.

 3

Introduction:

Setting up a Key Distribution Center (KDC) for a large-scale PacketCable network
deployment can present operational and security considerations that create hours of
additional, manual labor. While the industry in general does not provide an automated
solution to address these tasks, Alopa Networks’ new Smart Server Technology ™ does.
The Alopa technology saves Multiple Service Operators (MSOs) time, and prevents
configuration and security problems further down the line.

This paper addresses the operational overheads and additional features required for large-
scale, secure PacketCable network deployment, and the thought behind our new solution.
While it refers to PacketCable specifically, it also is applicable to CableHome and other,
future technologies that may embrace similar systems.

Securing the Security Server Itself

PacketCable provides a variety of ways to protect its network with security protocols,
depending on the interface. The adoption of the Kerberos Protocol [2] provides the core
of the security infrastructure because Kerberos voluntarily exposes itself to suspect
elements. In addition, other services rely on the authentication/rejection judgments of the
Kerberos protocol and the provisioning server for normal operation.

Kerberos as a protocol assumes the KDC is a trusted server, running approved software,
in a physically secure location or machine with limited access to unauthorized personnel
or potentially compromised networks. The reason for this constraint is that a compromise
of the KDC (or the means of authentication, which in this case are the PacketCable
certificates and the service keys) leads to the compromise of the whole realm in which
that KDC operates. That could impact the entire network’s security, which could
compromise the services and lead to theft or disruption.1

In simple terms, this means the KDC, itself, must be installed on a different machine,
independent of other application servers and disconnected from any network with which
it does not directly interact.

The reasoning behind keeping the KDC isolated is that application servers open up
various interfaces that can introduce security problems. For example, at a network layer,
they may open up various ports such as TFTP, HTTP, which can have security holes. Or
they may contain untested software such as shareware, which may give access control to
users such as technicians or customer service representatives, who are not aware of the
security constraints. As any network security analyst would point out, if you reduce the
number of potentially un-trusted interfaces, it’s easier to secure the network.

1 Contingency measures for the same are dealt with at a later stage.

 4

There is an argument that such a system can still be secured. But doing so increases
maintenance and operational costs by requiring monitoring tools, physical access
restrictions or more logging, rather than simple, physical security. In addition, the
restrictions imposed can become a hindrance, themselves, such as limits on access
privileges. Or, they too may become susceptible to compromise. For example: In case of
emergencies, physical or network security might be eased to permit troubleshooting. In
addition, for external applications, providing access to external vendors (physical or
otherwise) is a potential security threat. Furthermore, relying purely on any contingency
plans like Certificate Revocation Lists (CRLs)2 might be disastrous because they could
increase run-time costs while better, simpler mitigation plans can avoid that.

Generating the Secure Data

Assuming a KDC has been acquired and installed in a secure location, configuring the
server itself and the various application servers is not a trivial task outside the lab
environment.

Since PacketCable relies on both PKINIT for authentication within Kerberos, and the
concept of ‘shared secret keys,’ this means:

• Generating the appropriate certificates, which involves:
o Creating certificates with the right information (For example: REALM

and FQDN)
o Managing and distributing these certificates across multiple KDCs
o Securing the certificates and having a process in place for distributing

them
• Generating the appropriate service keys for various application servers and their

distribution
• Versioning the service keys to prevent well-known hacking algorithms from

breaking into the network

Let’s look at each of these, in turn.

Generating Certificates

While the generation of certificates required for a PacketCable network appears to be a
non-trivial task, the maintenance and secure distribution for large-scale deployments, if
not planned ahead, might prove even more daunting.

To begin with, the hierarchy looks like:

2Certificate Revocation List is described later on

 5

The hierarchy on the right is self-contained because the manufacturers embed the
appropriate certificates. The hierarchy on the left, however, is under the control of the
MSO (from the Service Provider CA downwards). Service Provider CA certificate
maintenance is an arduous task because there are various constraints:

• The MSO has to secure the Service Provider CA certificate (specifically the
private keys) to prevent compromise. If it doesn’t, the entire deployment on that
certificate is at risk

• While security is a major concern, the certificates cannot be made physically
secure in a central location. That’s because if the certificates/private keys are lost,
the hierarchy becomes less useful for future expansion or regeneration of
certificates. So a process must be put in place

• The certificates generated below the hierarchy have to be secured too, because
compromise of any certificates can potentially lead to theft or denial of services

So the MSO needs a secure way of:

• Generating certificates
• Storing the certificates
• Distributing the certificates

The solution can be simple and standardized if the MSO has the right tools to generate
the certificates and store them in standard, secure formats like PKCS#12. That format can

CableLabs Service Provider Root

 Service Provider CA

 Local System CA (Optional)

KDC 1 KDC 2 KDC 3

 MTA Root

 MTA Manufacturer Cert

MTA 1 MTA 2 MTA n

Figure 0: Relevant PacketCable Certificate Hierarchies

 6

effectively store certificates with passwords to prevent compromise. Also, if the KDC can
accept those certificates in PKCS#12 format, the distribution becomes an easier task.
Current implementations mostly have proprietary formats that often expose private keys,
making it easier to steal them during transit or storage.3

Maintaining the Service Keys

MSOs are not alien to the concept of sharing passwords or other secretive information.
This is typically done by controlling them all at a central location and changing them on
various different servers with remote access tools (SSH, Secure Telnet etc.). However,
given that each KDC in a realm might be associated with a number of application servers
such as provisioning servers or Call Management Systems (CMSs), a simply linear
complication can grow exponentially.

As an example, Figure 1 describes a simple network involving ‘n’ number of servers,
each having two accounts, and the password for which is changed every month.

This process is easier today because the servers themselves (CMTSs or application
servers) only interact via man-machine interfaces such as telnet or HTTP, or through
inbuilt interfaces. They don’t have to interact with each other or a centralized server. So

3 The Alopa KDC Server is among the first (and perhaps the only one currently) in the industry to
incorporate pure PKCS#12 based certificate acceptance.

Server 1 Server 2 Server n

Physically Secure, Trusted
Server

Figure 1: Updating of Secure Information

 7

information update is typically passwords for various users and the kind 4 and is generally
specific to each device.

However, this changes with a Kerberized environment. Not only do we have to update
information across the network, we also have to synchronize the data between the KDC
and the application servers as depicted in Figure 2.

The reason for the complexity is the need to sync all service keys. While this can be done
with service key versioning, an easier way is Automated Service Key Versioning, using
concepts similar to Smart Server Technology™. 5

This would mean that:

4 Honorary exceptions exempted.
5Deal with in another paper, Smart Server Technology is a trademark of Alopa Networks, Inc.

KDC1 KDC2

Prov
Srvr1

CMS1

CMS2

Prov
Srvr 2

CMS3

Physically Secure, Trusted
Server

Fig 2: Update of secure information in a Kerberized
network

 8

• Servers using the Smart Server Technology automatically sync up with different,
dynamically-generated service keys. The situation in Figure 2 then changes as per
Figure 3.

As Figure 3 shows, this eliminates the need to sync all the servers from an external
server. Meanwhile, the external server can still speak to the individual elements to:

• Change certificates
• Add to CRLs in case of potential compromises
• Update the periodicity of change
• Reset the seeds for service keys
• Correct conflicts
• Configure failover etc.

Proper planning in this case can reduce operational costs of:

• Improper configuration

KDC1 KDC2

Prov
Srvr1

Appl
server1

Appl
Server2

Prov
Srvr 2

CMS3

Fig 3: Update of secure information using Smart
Server Technology™

Physically Secure, Trusted
Server

 9

• Compromise of the keys during configuration
• Costs of a secure interface to configure the KDCs and the various application

servers to which they interact
• Non-repudiation recovery costs

It also aids in:

• Auto recovery of servers in case of software, hardware or network failure
• Increases in the security level, since automation would lead to more frequent

changes to the keys involved, eliminating traditional brute-force attacks

Maintaining and Administering the Network

The planned (and unplanned) increase in services provided by the broadband industry
relies heavily on the underlying security protocols and the servers themselves. This
requires that all underlying servers be up 24/7 to prevent service loss. 6 Maintaining a
network of security servers with mostly encrypted messages requires savvy operators and
makes it harder to troubleshoot and diagnose problems across numerous locations.
Automation of recovery and fault-tolerance among the servers themselves is key for
effective, transparent network operation, without compromising security requirements set
by the specifications.

Thus, it is desirable that a KDC, as well as any application server incorporating
Kerberized services, include as part of its architecture:

• A strong basic architecture to prevent ‘break-ins’
• Minimal intelligence 7 to identify and isolate errors due to improper

configuration8
• Appropriate reporting levels to indicate probable network problems 9
• Different levels of logging capability to cater to the level of the troubleshooter,

whether a technician or security expert

Protocol Overheads, Future Considerations

While Kerberos is an effective, proven technology, it has traditionally been utilized in
networks that involve client-server architecture, which are mostly limited in number as
well as in real-time requirements. (For example: Corporate networks.) Now, with the
introduction of Kerberos into devices like Message Transfer Agents (MTAs), which are

6 Example: Primary Line Service.
7 Like Alopa Smart Server Technology™.
8 For Example: If there are invalid certificates configured on the server, it should flag the same.
9 For Example: A valid MTA, which is repeatedly sending a request for an erroneous CMS (invalid
FQDN).

 10

out in an un-trusted environment, and involving costly PKINIT operations, the processor
overheads indicate that each MTA would take up a couple of seconds for each
provisioning cycle. As a result, the time to bring up a whole network from scratch rises
with the number of MTAs a KDC has to cater to.

In the future, it would be better to take into consideration the fact that an MTA, once
authenticated, can be recognized without going through the whole PKINIT process.

Future implementations should also include ways of decreasing the KDC-Prov
interactions. This would reduce interaction time for every provisioning cycle.

Alopa’s Approach and Differentiator

The bottom line is: Every KDC, like any other PacketCable element that caters to these
specifications, behaves the same way functionally.

However, because the cable industry is taking the leap into creating secure networks from
an Access Network Standpoint, 10 most of the thought development is focusing on
proving and deploying the technology, rather than the operational and maintenance
considerations raised here. 11

At Alopa, we have proven this technology in the lab and taken it from its infancy to its
teenage years. Given our position in the standards arena, in general, and PacketCable in
particular, we feel it is time to look forward. As a result, we are incorporating these
considerations into our product, and in doing so, setting a new standard for security and
KDC deployments. While these are technical requirements, they also act as
differentiating factors that set Alopa’s KDC offering apart from other KDCs in the
market, current and the future.

Some factors worth considering are:

• The KDC was developed from scratch and is not based on the MIT KDC code 12
• The KDC incorporates standards like PKCS#12, which aids in maintenance and

distribution of the Certificates/Private Keys

10 DOCSIS1.1 is on the Rf side.
11 Specifically, the KDC. Other papers will deal with other elements.
12 An argument can be made that MIT KDC code is tested, but PacketCable makes changes within
Kerberos that are easier to manage when developed independently. Besides, Alopa’s solution for security is
based on well-tested and reliable software libraries underneath.

 11

Alopa KDC Software

The upcoming releases of the KDC software will include:

• PKI certificate generation tools
• PKI management tools
• Alopa Smart Server Technology™ for automatic service key versioning
• Increased efficiency through reduced time per MTA reset cycle
• An increased number of MTAs that a KDC can handle
• Failover incorporation

References

[1] PacketCable™ Security Specification, PKT-SP-SEC-I07-021127
http://www.packetcable.com/downloads/specs/PKT-SP-SEC-I07-021127.pdf

[2] Kerberos Network Authentication Service, draft-ietf-cat-kerberos-revisions-
07.txt

Appendix B in http://www.packetcable.com/downloads/specs/PKT-SP-SEC-I07-
021127.pdf

